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Modal description of internal optimal streaks
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This paper deals with the definition and description of optimal streaky (S)
perturbations in a Blasius boundary layer. First, the asymptotic behaviours of
S-perturbations near the free stream and the leading edge are studied to conclude
that the former is slaved to the solution inside the boundary layer. Based on these
results, a quite precise numerical scheme is constructed that allows concluding that
S-perturbations produced inside the boundary layer, near the leading edge, can be
defined in terms of just one streamwise-evolving solution of the linearized equations,
associated with the first eigenmode of an eigenvalue problem first formulated by
Luchini (J. Fluid Mech., vol. 327, 1996, p. 101). Such solution may be seen as an internal
unstable streaky mode of the boundary layer, similar to eigenmodes of linearized
stability problems. The remaining modes decay streamwise. Thus, the definition of
streaks in terms of an optimization problem that is used nowadays is not necessary.

1. Introduction
Streaky perturbations of two-dimensional boundary layers are three-dimensional

waves that show a short-wave spanwise oscillation and a slower streamwise evolution,
with characteristic lengths comparable to the boundary layer thickness and to distance
to the leading edge, respectively. This is in contrast to Tollmien–Schlichting (TS)
modes, which show a short wave streamwise oscillation. S-perturbations were already
recognized by Crow (1966) and subsequently analysed by Ellingsen & Palm (1975),
Landhal (1980), Luchini (1996, 2000), Andersson, Berggren & Henningson (1999)
and Leib, Wundrow & Goldstein (1999) among others. These are somehow the
(mathematically) natural perturbations of the boundary layer since they exhibit the
same scaling as the steady state and thus admit a Reynolds-number-independent
formulation, while Reynolds number cannot be eliminated from the Orr–Sommerfield
equation that governs TS-modes. Streamwise evolution of S-perturbations first shows
algebraic growth and then exponential decay due to viscous dissipation. Such
growth–decay combination, known as transient growth (Hultgren & Gustavsson
1981; Threfethen et al. 1993; Bagget & Threfethen 1997; Schmid 2007), can still
be dangerous if algebraic growth is large enough as to enhance nonlinear interaction,
which may allow a three-dimensional destabilization of TS-modes by S-perturbations
(Klebanoff, Tidstrom & Sargent 1962) and promote bypass transition (Morkovin 1984;
Morkovin & Reshotko 1990). S-perturbations, on the other hand, may also have a
beneficial effect for smaller (than those promoting bypass transition) amplitudes, as
shown by Cossu & Brandt (2002) (see also Fransson et al. 2004, 2006).
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Figure 1. Sketch of the boundary layer, with the internal (IR) and external (ER) regions.

Here, we concentrate on freely propagating streaks that are produced somewhere
near the leading edge (figure 1), inside the boundary layer. Identifying modes is non-
trivial under transient growth. This is in contrast to the case of exponentially growing
or decaying eigenmodes, which allow to define/classify modes according to growth
intensity. In other words, using the real part of the eigenvalues, modes are classified
according to how dangerous (unstable) they are. The counterpart of this criterium in
transient growth leads to the somewhat subtle concept of optimal streaks (Andersson
et al. 1999; Luchini 2000), which are defined as the maximizers (for varying initial
conditions and spanwise wavenumber) of some streamwise energy gain. The objective
of this paper is precisely to describe optimal modes through a simpler initial value
problem. The main conclusion is that the most dangerous S-perturbations can be con-
sidered as just one unstable streaky mode (USM), in the sense that they can be defined
in terms of just one streamwise-evolving solution of the linearized equations, with
well-defined initial conditions near the leading edge. The latter are calculated solving
an eigenvalue problem already considered by Luchini (1996). In other words, this
streaky mode is determined by its behaviour near the leading-edge singularity. There
are additional modes, but these decay streamwise.

This paper has been strongly inspired by Luchini (1996), Andersson et al. (1999)
and Luchini (2000). The remaining of the paper is organized as follows. The linearized
problem yielding S-perturbations is formulated in § 2, where some previous results
are also quoted. The spanwise wavenumber is eliminated from the equations using
self-similar variables in § 3, where the asymptotic behaviours near the free stream and
the leading edge are also analysed and a quite efficient numerical scheme to integrate
the equations is constructed. All these allow in § 4 to provide a natural definition
of modes and to clarify the structure of optimal perturbations. The paper ends with
some concluding remarks, in § 5.

2. Formulation and other preliminaries
The starting point is incompressible continuity and Navier–Stokes equations in the

usual boundary layer scaling/approximation, assuming a spanwise oscillation with a

period comparable to the boundary layer thickness, δ∗ = L∗/
√

Re, where L∗ is the
distance to the leading edge and Re= u∗L∗/ν � 1 is the Reynolds number based on
the free stream velocity u∗. The streamwise coordinate x is non-dimensionalized with
L∗, the normal and spanwise coordinates with δ∗, the streamwise velocity with u∗,
the normal and spanwise components with u∗/

√
Re and the pressure with ρ∗(u∗)2,

as usually. We consider perturbations of a basic, almost parallel, two-dimensional
steady state, decompose in normal modes as (u, v, w, p) = (ub, vb, 0, pb)+(U, V, iW, P/

Re)eiαz+· · · (note that the steady pressure and pressure perturbations scale differently,
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see Luchini 1996) and linearize to obtain

∂xU + ∂yV − αW = 0, (2.1)

∂x(ubU ) + vb∂yU + V ∂yub = ∂yyU − α2U, (2.2)

ub∂xV + U∂xvb + ∂y(vbV ) = −∂yP + ∂yyV − α2V, (2.3)

ub∂xW + vb∂yW = −αP + ∂yyW − α2W, (2.4)

where ∂x, ∂y, . . . denote hereafter partial derivatives. The boundary conditions are

U = V = W = 0 at y = 0 and ∞, P = 0 as y → ∞. (2.5)

We consider a flat plate at zero incidence boundary layer, whose basic steady state is
given in (3.1) below and substituted into (2.1)–(2.4) completes the formulation.

The most dangerous perturbation, known as optimal perturbation, was defined by
Andersson et al. (1999) and Luchini (2000) as the maximizer of some (kinetic) energy
gain between a fixed initial section at x = x0 � 1/

√
Re (to avoid the three-dimensional

leading-edge region) and a generic x-section. Namely, they maximize the ratio

g = max

∫ ∞

0

[U 2 + Re−1(V 2 + W 2)] dy∫ ∞

0

[ReU 2 + (V 2 + W 2)]x=x0
dy

, (2.6)

for varying α and initial conditions. At large Reynolds number, the (1/Re)-term in
the numerator can be neglected. Concerning the denominator, Luchini argues that
this should be as small as possible in optimal perturbations and thus he requires
that U =0 at x = x0, which yields a Reynolds-number-independent optimization
problem. Andersson et al. instead retained the whole denominator and found optimal
perturbations that essentially coincided with those obtained by Luchini and were
roughly independent of Re in a range that excluded the limiting value Re = ∞. Some
remarks about these results are now in order:

(a) Both setting U = 0 and retaining the whole denominator with finite Re is
disturbing because the boundary layer approximation requires that U 2 � (V 2 +
W 2)/Re.

(b) As x → 0, the basic steady state exhibits a characteristic length in the
normal direction such that ζ = y/

√
x ∼ 1, which makes the normal coordinate y not

appropriate in this limit. But using the variable ζ does not solve the difficulty either,
because the problem also exhibits a second characteristic length, namely y = ζ

√
x ∼ 1,

which is associated with decay of the variables to zero to match the outer stream.
These two characteristic lengths (see figure 1) will be taken into account below to
obtain precise numerical results.

(c) In spite of remarks (a) and (b), Andersson et al. (1999) obtained quite robust
results using the variable y, between the initial and final sections x0 ∼ 0.01 and 1,
which coincided with those by Luchini (2000).

(d ) Results showed (figure 5, p. 300 in Luchini 2000) an approximate self-similarity,
namely the optimal streamwise velocity scaled with its maximum is approximately
constant for varying α. An explanation of this was intended by Luchini.

It turns out that the robustness of the results, the approximate self-similarity and the
relation between the various definitions of optimal perturbations are related between
each other. But understanding all these requires some care.
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3. The mathematical structure of S-perturbations
The basic steady state in the Blasius boundary layer is given by

ub = F ′(ζ ), vb = [ζF ′(ζ ) − F (ζ )]/(2
√

x), wb = 0, pb = −u2
b/2, (3.1)

in terms of the self-similar normal coordinate

ζ = y/
√

x, (3.2)

and the streamfunction F , given by the Blasius equation F ′′′ +FF ′′/2 = 0 in 0 <ζ < ∞,
F (0) =F ′(0) = 0, F ′(∞) = 1, which shows the following asymptotic behaviour at the
free stream (ζ → ∞):

F = ζ − a + O(e−(ζ−a)2/2), with a 
 1.7208. (3.3)

3.1. Boundary layer scaling and elimination of the spanwise wavenumber

Now, we rewrite (2.1)–(2.5) in terms of the boundary layer variable (3.2). In addition,
we use the self-similarity of the linearized equations, inherited from the boundary
layer self-similarity, to eliminate the spanwise wavenumber α from the formulation.
This is done using (3.2) and the self-similar variables:

x̂ = α2x, V̂ =
√

xV, Ŵ =
√

xW, P̂ = xP, (3.4)

which allow rewriting (2.1)–(2.5) as

x̂∂x̂U =
ζ

2
∂ζU − ∂ζ V̂ +

√
x̂Ŵ , (3.5)

x̂F ′∂x̂U = ∂ζζU +
F

2
∂ζU +

ζF ′′ − 2x̂

2
U − F ′′V̂ , (3.6)

x̂F ′∂x̂V̂ = ∂ζζ V̂ +
F

2
∂ζ V̂ − F − ζF ′ − ζ 2F ′′

4
U − ζF ′′ − F ′ + 2x̂

2
V̂ − ∂ζ P̂ , (3.7)

x̂F ′∂x̂Ŵ = ∂ζζ Ŵ +
F

2
∂ζ Ŵ +

F ′ − 2x̂

2
Ŵ −

√
x̂P̂ , (3.8)

U = V̂ = Ŵ = 0 at ζ = 0 and ∞, P̂ = 0 at ζ = ∞. (3.9)

3.2. Behaviour as ζ � 1 (external region)

Invoking (3.3) and noting that the last term in (3.6) decays to zero exponentially fast
(as exp[−(ζ − a)2/2]) at the edge of the internal region, (3.5)–(3.8) simplify to

U = 0, ∂ζ V̂ =
√

x̂Ŵ , (3.10)

x̂∂x̂ V̂ = ∂ζζ V̂ +
ζ − a

2
∂ζ V̂ +

1 − 2x̂

2
V̂ − ∂ζ P̂ , (3.11)

x̂∂x̂Ŵ = ∂ζζ Ŵ +
ζ − a

2
∂ζ Ŵ +

1 − 2x̂

2
Ŵ −

√
x̂P̂ . (3.12)

These correspond (as must be) to the transversal free stream problem obtained
linearizing in (2.1)–(2.4) around the steady state (ub, vb, wb) = (1, a/2

√
x, 0).

Proceeding in a standard way (differentiating (3.11) with respect to ζ , multiplying
(3.12) by

√
x̂, subtracting and substituting (3.10)), we obtain

∂ζζ P̂ − x̂P̂ = 0, (3.13)

or ∂yyP − α2P = 0 in original variables. Integration of (3.13), excluding exponentially
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divergent solutions, yields P = P̂∞(x̂) exp[−
√

x̂(ζ − a)]. Substituting this into (3.10)–
(3.12) and integrating the resulting equations, we obtain

(V̂ , Ŵ , P̂ ) = (V̂∞(x̂), Ŵ∞(x̂), P̂∞(x̂)) exp[−
√

x̂(ζ − a)], (3.14)

where V̂∞, Ŵ∞ and P̂∞ are such that x̂V̂ ′
∞ = V̂∞/2 +

√
x̂P̂∞ and V̂∞ + Ŵ∞ = 0. Conver-

gence to the asymptotic values is exponential at the edge of the internal region, namely
(U, V̂ , Ŵ , P̂ ) = [(0, V̂∞, Ŵ∞, P̂∞)+EST ] exp(−

√
x̂(ζ −a)) as ζ → ∞, where EST stands

for exponentially small terms, of the order of exp[−(ζ − a)2/2]. This means that the
variable

H = Ŵ + V̂ , (3.15)

also behaves as exp[−(ζ − a)2/2] at large ζ . And invoking (3.14) H is seen to be
the transversal divergence in the external region. For convenience, we use this new
variable instead of Ŵ , which requires to replace (3.5) and (3.8) by

x̂∂x̂U =
ζ

2
∂ζU − ∂ζ V̂ −

√
x̂V̂ +

√
x̂H, (3.16)

x̂F ′∂x̂H = ∂ζζH +
F

2
∂ζH − F − ζF ′ − ζ 2F ′′

4
U

−ζF ′′

2
V̂ +

F ′ − 2x̂

2
H − ∂ζ P̂ −

√
x̂P̂ , (3.17)

3.3. Behaviour as x̂ � 1 (leading edge)

Assuming that the solution behaves as a power of x̂, the approximation as x̂ → 0 is
found to be given by an eigenvalue problem. This limit was already considered by
Luchini (1996), but the analysis below exhibits two essential differences from Luchini,
namely we use the variable H instead of Ŵ and we take into account the asymptotic
behaviour as ζ → ∞ (see (3.14) and (3.15)). The asymptotic behaviour is of the
form

(U, V̂ , H, P̂ ) 
 x̂−λ(x̂Ũ , x̂Ṽ ,
√

x̂H̃ , x̂P̃ ) exp[−
√

x̂(ζ − a)], (3.18)

where, neglecting O(
√

x̂)-terms, the various coefficients are given by

ζ

2
Ũ ′ − Ṽ ′ + (λ − 1)Ũ + H̃ = 0, (3.19)

Ũ ′′ +
F

2
Ũ +

ζF ′′ + 2(λ − 1)F ′

2
Ũ − F ′′Ṽ = 0, (3.20)

H̃ ′′ +
F

2
H̃ ′ + λF ′H̃ = 0, (3.21)

Ũ = Ṽ = H̃ = 0 at ζ = 0, Ũ , Ṽ ′, H̃ → 0 as ζ → ∞. (3.22)

This eigenvalue problem exhibits two kinds of eigenvalues: (i) Luchini eigenvalues
(λ= 0.7866, 1.694, 2.627, . . . , see Luchini 1996) are given by (3.21) and (ii) Libby–Fox
eigenvalues (λ= 1, 1.887, 2.814, . . . , see Libby & Fox 1964) are defined by (3.19) and
(3.20), with H̃ = 0. Note that only the first Luchini mode provides growth in x̂.
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Any initial condition, (Ũ0, Ṽ0, H̃0), can be written as a series expansion of these
modes. The component on each Luchini mode is given by (cf. (13) of Luchini 1996)

a(Ũ , Ṽ , H̃ ), with a =

∫ ∞

0

(F ′/F ′′)H̃0H̃ dζ∫ ∞

0

(F ′/F ′′)H̃ 2 dζ

, (3.23)

as obtained eliminating Ṽ (upon integrating (3.19) and substituting into (3.20)) to
rewrite the whole problem as L1Ũ +L2H̃ = 0, L3H̃ =0. The adjoint of this problem
is

L∗
1Ũ

∗ = 0, L∗
2Ũ

∗ + L∗
3H̃

∗ = 0, (3.24)

where L∗
j stands for the adjoint of the operator Lj ; note that all these apply

independently of the inner product. Since λ is not a Libby–Fox eigenvalue, the first
equation in (3.24) implies that Ũ ∗ = 0. Then, (3.19) follows noting that the latter
equation is self-adjoint with the inner product 〈H̃1, H̃2〉 =

∫ ∞
0

(H̃1H̃2/F
′′) dζ .

3.4. Numerics

As anticipated at the end of § 3.2, we have replaced (3.5) and (3.8) by (3.16) and
(3.17), using the new variable (3.15). In order to integrate the resulting problem in
the computational domain 0<ζ <L, we note that the basic steady-state converges
to its asymptotic value at ζ = ∞ extremely fast, and thus the approximation (3.10)–
(3.12) applies as (say) ζ > 12. Thus, we choose L0 such that 12 � L0 < L, select an
equispaced N-points mesh in 0<ζ <L, and proceed as follows:

(a) Equation (3.7) is replaced by

∂ζ P̂ +
√

x̂P̂ = 0 if ζ > L0, (3.25)

which is equivalent to (3.13) (which, in conjunction with (3.16)–(3.6) and (3.17), is
equivalent to (3.7) if ζ >L0) if divergent behaviours as ζ → ∞ are excluded.

(b) The operator ∂ζζ is discretized using second-order centred differences,
(∂ζζ q)n = (qn+1 − 2qn + qn−1)/(2δ2

ζ ), with δζ = L/N . The operator ∂ζ is discretized
in (3.5) and (3.25) (which are first order in ζ ) with second-order forward differences
(Lambert 2000), (∂ζ q)n =(qn−2 −4qn−1 +3qn)/(2δζ ), and (to avoid upwind instabilities)
with second-order backward differences, (∂ζ q)n = (−qn+2 + 4qn+1 − 3qn)/(2δζ ), in
(3.6)–(3.8).

(c) After discretizing spatial derivatives and applying the boundary conditions
U = V̂ = H = 0 at ζ =0 and U =H = 0 at ζ = L (note that neither the boundary
conditions for pressure nor a boundary condition for V̂ at ζ = L are needed), we
obtain a system of ordinary differential equations of the form x̂M∂x̂q = L(x̂)q , where
q = (U, V̂ , H, P̂ ) is the 4Nth state vector and M and L are (4N) × (4N) matrices.
Also, we use the new variable s = ln(x̂/x̂0) (which replaces x̂∂x̂ by ∂s), where x̂0 is the
initial value of x̂.
Marching in s is performed using second-order forward differences, namely

Mqm−2 − 4qm−1 + 3qm

2δs

= Lmqm, (3.26)

which are applicable after the second s-step; the first step is performed using a
first-order forward difference, namely (∂sq)1 = (q1 − q0)/δs .

The resulting numerical scheme is extremely efficient and robust because it avoids
numerical instabilities and catches well the behaviour as ζ → ∞. The latter relies
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Ŵ

U

0 2 4 6 8

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

H

ζ ζ

Figure 2. Streamwise, cross-flow velocity profiles and H -profile, of the USM rescaled with
their maxima in 0 < ζ < ∞, at x̂ = 10−5, 10−4, 10−3, 10−2, 10−1 and 1; arrows indicate increasing
x̂. Luchini’s initial conditions, plotted with dashed lines using the same rescaling, are
indistinguishable from results at x̂ = 10−5. The streamwise velocity of the Stewartson mode is
also shown in (a) and (c) with dot-dashed line.

heavily on (3.25). For instance, integrating in x̂0 = 10−9 < x̂ < 1 (a typical run in next
section) with L = 15, L0 = 12, N = 150 and 500 s-steps (which means that δζ = 0.1
and δs = 9ln(10)/500 = 0.0461) only requires 50 CPU seconds using MATLAB in a
standard desktop computer. Results are exact within plot accuracy and independent
of L, L0, δζ and δs provided that 12 � L − 3 � L0 � L, δζ � 0.1, δs � 0.05 and
0.2 � δ2

ζ /δs � 5. The latter requirement comes from the fact that δ2
ζ /δs should be

neither too small nor too large because (3.26) is a singular implicit system, namely M
and Lm are both singular.

4. Results
The evolution equations (3.5)–(3.7), (3.16)–(3.17) must be completed with initial

conditions. To begin with, we take as initial condition at x̂0 = 10−9 the first Luchini
mode, as defined in (3.18). The resulting solution, rescaled with the maximum of |U | in

x̂0 < x̂ < 1, 0 < ζ < ∞, will be called the USM below and denoted as (Uu, V̂ u, Hu, P̂ u).
The streamwise, cross-flow velocity profiles and the H -profile (normalized with their
maxima in 0 <ζ < ∞) are plotted in figure 2, and the maxima of U , V̂ , Ŵ and H

are plotted versus x̂ with solid lines in figure 3(a). As already noticed by Luchini
(2000), figure 2(a) shows that the streamwise velocity of the optimal perturbation
remains approximately constant, up to rescaling, and approximately equal to both the
streamwise velocity of the first Libby–Fox mode, U = ζF ′′ (Stewartson 1957; Libby &
Fox 1964; and Luchini 1996) and the streamwise velocity of the first Luchini mode;
these two are also plotted for comparison. Figure 2 also shows that the new variable
H introduced above also remains approximately constant and approximately equal to
U (when rescaled with its maximum), which suggests that a low-dimensional Ordinary
Differential Equation (ODE) model of streaks should be possible.
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Figure 3. (a) Maxima (in 0 <ζ < ∞) of U , V̂ , H and Ŵ versus x̂ using random initial
conditions at x̂0 = 10−8, 10−6 and 10−4 (dashed lines) and using the projection on Luchini’s

initial conditions (solid lines); the asymptotic behaviours (see (3.18)) Ŵ ∼ H ∼ x̂1/2−λ1 and

V̂ ∼ x̂1−λ1 , with λ1 = 0.7866, are plotted with dot-dashed lines. (b) Maximum of ‘energy gain’
GL (plotted versus the spanwise wavenumber) between x = 0.01 and x = 1 (thin dot-dashed)
and between x = 10−5 and 1 (thin solid); the quotient GL calculated on the USM between
x = 0.01 and x =1 (thin dashed); the quotient Gu calculated over the USM between x = 0.01
and x = 1 (thick dashed) and between x = 10−5 and 1 (thick solid). In order to facilitate
comparison between the various curves, all of them are normalized with their maxima in
0 <α < 1.

In addition, in order to illustrate the effect of general initial conditions, we consider
initial conditions of the form (U, V̂ , H, P̂ ) = (

√
x̂0U0,

√
x̂0V̂0, H0,

√
x̂0P̂0), which scale

with the boundary layer scaling (3.18). Here, we set V̂0 = P̂0 = 0 and choose U0 and
H0 randomly as follows

U0 =

[
4∑

k=0

γ 1
k cos(kζ )

]
ŨL, H0 =

[
1 +

4∑
k=1

γ 2
k cos(kζ )

]
H̃L, (4.1)

where ŨL and H̃L are the U and H components of the first Luchini eigenfunction
and γ 1

k and γ 2
k are chosen randomly in the interval between −1 and 1. Fixing two

of the four variables makes sense since the initial conditions should satisfy two
compatibility conditions (which are selected by the equations after a few integration
steps if not satisfied initially). One of these is obtained multiplying (3.16) by F ′

and subtracting (3.6), and the other one by substituting equations (3.6)–(3.17) into
the x̂-derivative of (3.16). The result is plotted (after rescaling as indicated below)
with dashed lines in figure 3(a). Now, for each of these initial conditions, we
consider its projection (defined according to (3.23)) on the USM at this value of
x̂0, (Uu

0 , V̂ u
0 , Hu

0 , P̂ u
0 ) = (Uu(x̂0), V̂

u(x̂0), H
u(x̂0), P̂

u(x̂0)), namely

(Ũ0, Ṽ0, H̃0, P̃0)
proj = a

(
Uu

0 , V̂ u
0 , Hu

0 , P̂ u
0

)
, with a =

∫ ∞

0

(F ′/F ′′)H0H
u
0 dζ∫ ∞

0

(F ′/F ′′)(Hu
0 )2 dζ

. (4.2)

Thus, the projected initial conditions yield a solution that is proportional to the USM;
for comparison, the original solution is rescaled such that the solution with projected
initial conditions exactly coincides with the USM. These initial conditions are applied
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several times at various values of x̂0 (namely, at x̂0 = 10−8, 10−6 and 10−4), obtaining
the solutions plotted with dashed lines in figure 3(a). Note that:

(a) After an initial streamwise transient, all solutions approach the USM up to a
constant amplitude. Equation (4.2) allows us to calculate the amplitude of the USM
for arbitrary initial conditions. It is precisely in this sense that the USM is completely
similar to what are called modes in equations with constant coefficients.

(b) Any initial condition can be expanded into the (infinitely many) eigenmodes
considered in § 3.3, to obtain a complete system of initial conditions, which provides
a complete system of solutions; the first of these, namely that associated with the
first Luchini eigenvalue, is the USM and is the only one that does not decay as x̂

grows. This means that for sufficiently small x0 all these solutions contribute to the
denominator in (2.6) but only the USM contributes to the numerator, which means
that the maximizer of (2.6) must be precisely the USM.

(c) Thus transients in figure 3 are associated with the projection of the initial
condition on the remaining modes considered in § 3.3. Since the most dangerous of
these is the second Luchini mode, which decays as (x̂0/x̂)λ2−λ1 ∼ (x̂0/x̂)0.907, transients
survive until (say) x̂/x̂0 ∼ 10 if the initial amplitude of the second Luchini mode
is comparable to that of the first mode; if the former is much larger than the
latter, transients will enlarge. This is consistent with the experiments by Fransson
et al. (2004), which showed remarkable agreement with the linear theory whenever
x/x0 = x̂/x̂0 were larger than 10. Precise description of other experiments in this paper,
with x/x0 = 5, 1.75 and 1.375, would require to consider more modes.

(d) In order to compare with Luchini’s results, we consider the following expressions

GL =

√
x0

[∫ ∞

0

U 2 dζ

]
x̂=α2[∫ ∞

0

(V̂ 2 + Ŵ 2) dζ

]
x̂=x0α2

, Gu =

√
x0

[∫ ∞

0

U 2 dζ

]
x̂=α2[∫ ∞

0

(F ′/F ′′)H 2 dζ

]
x̂=x0α2

. (4.3)

Here, GL is (invoking (3.4)) precisely the kinetic energy gain maximized by Luchini
(2000), namely the quotient (2.6), with Re−1 = 0 in the numerator and Re =0 in
the denominator. The maximum of this quotient for varying initial conditions at
x0 = 0.01 (calculated by Luchini) is plotted with thin dot-dashed line in figure 3(b);
the maximum of this curve is attained at α = 0.45. For comparison, the quotient GL

calculated along the USM is plotted with thin dashed line. The difference of both
curves is just due to the effect of the remaining modes in the maximization process,
which are not negligible at x0 = 0.01. At smaller x0 both curves coincide, which is
illustrated at x0 = 10−5 (solid thick curve); the maximum of this curve is attained at
α = 0.484, which is the asymptotic value of Luchini’s optimal wavenumber. The second
quotient in (4.3) corresponds to substituting the denominator in Luchini by the square
of the initial amplitude of the USM, as defined in (4.2). The quotient Gu along the
USM for x0 = 10−5 and x0 = 0.01 are plotted in figure 3 with thick-solid line and thick-
dashed lines, respectively; note that the former coincides with its counterpart for GL.

5. Concluding remarks
We believe that the results above clarify the structure of internal streaky

perturbations in Blasius boundary layers. In particular, we have shown that this
structure is quite simple and qualitatively similar to standard eigenmodes in standard
linear stability theory. The only differences are that growth is algebraic instead of
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exponential and that the streamwise evolution exhibits a growth–decay shape. The
consequence is that the optimization procedure used so far to define optimal streaks is
not necessary; modes instead are defined in terms of a well-defined evolution problem,
with well-defined initial conditions. The results above relied on two main ingredients,
namely self-similarity of the boundary layer allowed to eliminate the wavenumber
from the formulation and our quite robust numerical scheme (based on a careful
analysis of the behaviour of the solutions in the external region, which showed that
this is slaved to the internal region) and thus allowed to obtain precise results with
initial conditions at a section extremely close to the leading edge. Several additional
consequences of the results of the paper are in order:

(a) We expect that other self-similar two-dimensional boundary layers subject to
three-dimensional internal streaky perturbations be amenable to similar treatment.
This point is currently under research.

(b) Self-similarity is not present in general two-dimensional boundary layers, but
we expect that internal perturbations of these still show a behaviour in the external
region that is slaved to the behaviour in the internal region; thus, an efficient numerical
scheme should also be possible.

(c) The fact that forcing resulted only from internal perturbations, occurring
near the leading edge was essential in the analysis above. External forcing from
perturbations in the free stream produces a different behaviour in the external region
(namely, the velocity components do not decay to zero) and thus requires a different
treatment. This point is currently under research.

(d) Internal initial perturbations may result, for instance, from arrays of three-
dimensional objects near the leading edge (figure 1). We expect that the resulting three-
dimensional flow relaxes after several boundary layer thicknesses to a velocity profile
that exhibits the scaling encountered in § 3.3, which can be taken as a streamwise
initial condition to the equations considered above; but according to our results in § 4,
the velocity profiles evolve streamwise fairly fast to the unstable streaky mode, which
dominates downstream. Thus, the effect of the details of the leading-edge obstacles
should be appreciated only in the amplitude of the unstable streaky mode.

This research was partially supported by the Spanish Ministry of Education, under
Grant TRA2007-65699. We are indebted to two anonymous referees for some useful
comments that helped to improve presentation of the results.
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